druid.query.timeseries(url = druid.url(), dataSource, intervals, aggregations, filter = NULL, granularity = "all", postAggregations = NULL, context = NULL, rawData = FALSE, verbose = F, ...)
Returns a data frame where each column represents a time series
Queries druid for timeseries data and returns it as a data frame
## Not run: # # # Get the time series associated with the twitter hashtag #druid, by hour# druid.query.timeseries(url = druid.url(host = ""),# dataSource = "twitter",# intervals = interval(ymd("2012-07-01"), ymd("2012-07-15")),# aggregations = sum(metric("count")),# filter = dimension("hashtag") == "druid",# granularity = granularity("hour"))# # # Average tweet length for a combination of hashtags in a given time zone# druid.query.timeseries(url = druid.url(" "),# dataSource = "twitter",# intervals = interval(ymd("2012-07-01"), ymd("2012-08-30")),# aggregations = list(# sum(metric("count")),# sum(metric("length")# ),# postAggregations = list(# avg_length = field("length") / field("count")# )# filter = dimension("hashtag") == "london2012"# | dimension("hashtag") == "olympics",# granularity = granularity("PT6H", timeZone="Europe/London"))# ## End(Not run)